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Figure 11. Detailed architecture of the neural networks used for the Dynamic Spherical Neural Surfaces (D-SNS) and for the time warping.

The Supplementary Material is organized as follows;
Section A discusses the limitations and potential directions
for future work. Section B describes the implementation
details of our neural framework. Section C includes details
on the dataset. Section D presents additional results of our
neural framework.

A. Limitations and future work

Higher genus surfaces. D-SNS is based on spherical pa-
rameterization. Thus, it is limited to closed genus-0 sur-
faces. The representation, however, can be easily extended
to open genus-0 surfaces, which can be parametrized on
open domains such as a disk. Extending the representation
to higher genus surfaces would require a complex param-
eterization, e.g., using charts or even a volumetric domain.
This will be investigated in future work.

Computation efficiency. A key limitation of our neu-
ral framework is its high computation time, particularly
when training individual D-SNS. Although the representa-
tion provides a continuous representation of surfaces, and
thus all the differential properties can be computed analyt-
ically, the D-SNS needs to be fitted to every single 4D sur-
face. Thus, it is computationally expensive when analyzing
a large number of 4D surfaces. We plan in the future to ex-

plore shape-agnostic representations, e.g., by following an
approach similar to DeepSDF.

B. Implementation details
B.1. D-SNS network

We employ a Multi-Layer Perceptron (MLP) composed of
six residual blocks. Each block consists of two layers of
1024 neurons each. We use positional encoding of both
space and time. The output layer of each block uses Soft-
Plus as activation function to represent smooth and contin-
uous 4D surfaces. Figure 11 summarizes the detailed archi-
tecture.

Training. We learn a continuous representation F of a dis-
crete 4D surface using D-SNS. We first spherically parame-
terized the 4D surfaces, which consist of a set of triangular
meshes, with the approach of [14]. We then map the mesh
sequences to a temporal domain and allocate a time value
in the range of [0, 1]. Next, we train D-SNS for this dis-
crete 4D surface by defining a batch size of 80, 000 surface
points, which are randomly selected. For each point p we
have its associated point on sphere s and a time instance t.
We then parse this batch to the D-SNS network, which out-
puts the predicted points on the surface p∗. We minimize
the L2 loss between the D-SNS represented points p∗ and
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(a) DFAUST [5].

(b) CAPE [20].

(c) COMA [29].

(d) VOCA [9].

Figure 12. We measure the pointwise error between the proposed D-SNS and the ground truth discrete 4D surfaces. Here, we show some
time frames with the error plotted as a heatmap. Observe that the proposed neural representation can accurately represent 4D surfaces, with
a pointwise error that is less than 0.01%.

the discrete points p. We have noticed that using the ran-
dom sampling of surface points from the meshes helps our
D-SNS network to converge faster. It also results in smooth
and continuous 4D surfaces.

B.2. Spatial diffeomorphism

As discussed in Section 3.2.1, we select 3D instances f1, f2
from their 4D surfaces F1, F2. We then find the optimal
rotation O ∈ SO(3) and diffeomorsphism γ ∈ Γ such that
when O(f2 ◦ γ) is spatially register f2 onto f1.

We use a gradient descent-based optimization method
that finds the optimal diffeomorphism γ∗ and rotation O∗

in the SRNF space. As discussed in our approach, we ap-
ply the spatial registration framework directly to the neural
functions. We keep optimizing for diffeomorphism γ using
a weighted sum of spherical harmonic basis and rotation
O using Singular Value Decomposition (SVD). We apply
these on the unit sphere and parse the reparameterized unit
sphere to the D-SNS network, which results in a spatially
registered neural function f2 that is as close as possible to
f1.
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(a) COMA [29].

(b) VOCA [9].

(c) DFAUST [5].

(d) CAPE [20].

(e) Ground truth. (f) Dynamic neural surface.

Figure 13. Example of the interpolation quality of D-SNS. We train D-SNS on a subset of 30 temporal samples and visualize the time
interval as a heatmap. Note that the D-SNS is able to faithfully represent even the detailed clothed human (from the CAPE dataset) and
interpolate the missing sequences. The last row shows a zoom on the region highlighted in red.

B.3. Time warping network

The time-warping network is an MLP that finds the optimal
temporal alignment between the SRVFs q1, q2 of two curves
α1, α2 obtained from spatially registered D-SNS F1, F2;
see Figure 11 for the detailed architecture.

Training. We obtain the 4D surfaces F1 and F2 at a spheri-
cal resolution of 32× 32 with 50 time samples t}50i=1. First,
using PCA, we map the surfaces F1 and F2 to a low di-
mensional space to obtain two curves α1 = Z(F1), α2 =
Z(F2). We then compute their SRVF q1 = Q(α1), q2 =
Q(α2). Since the L2 metric in the SRVF space mea-
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(a) Source.

(b) Target before spatiotemporal registration.

(c) Target after spatiotemporal registration.

(a) Source.

(b) Target before spatiotemporal registration.

(c) Target after spatiotemporal registration.

Figure 14. Two examples of the spatiotemporal registration of 4D humans performing various actions. For each example, we show (a)
the source 4D surface, (b) the target 4D surface before registration, and (c) the target 4D surface after registration using the proposed
framework. Observe that the target neural surface after registration (c) is fully aligned with the source neural surface.

sures nonrigid deformations of curves in the original space,
we train the time warping network using the L2 loss, i.e.,
ζ∗ =∥ q1 − q2 ◦ ζ ∥. To ensure that ζ is a diffeomor-
phism, it needs to be a monotonically increasing function
on the temporal domain [0, 1]. To enforce this, we apply a
regularization term that enforces the first derivative of the
network with respect to time t to be non-negative. We also
apply the Sigmoid activation function to the output of the
time-warping network to keep its output within the bounds
of [0, 1].

We initialize the training with the parameters of a pre-
trained time-warping network that is overfitted, in an of-
fline pre-processing step, to the identity diffeomorphism.
We then refine the training for 2, 000 epochs and contin-
uously change the timestamps after every 200 epoch. This
way, the time-warping network is able to learn a continuous
temporal representation that aligns F2 to F1.

C. Datasets
We have evaluated the proposed framework on:
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(a) Source.

(b) Target before spatiotemporal registration.

(c) Target after spatiotemporal registration.

(a) Source.

(b) Target before spatiotemporal registration.

(c) Target after spatiotemporal registration.

Figure 15. Two examples of the spatiotemporal registration of 4D faces from the VOCA dataset. For each example, we show (a) the source
4D surface, (b) the target 4D surface before registration, and (c) the target 4D surface after registration using the proposed framework.
Observe that the target neural surface after registration (c) is fully aligned with the source neural surface.

CAPE
squat chicken wings twist tilt left punching bend back and forth

4D Atlas 0.4607 1.1354 1.8219 1.404 1.6472
Ours 0.1491 0.3199 0.2193 0.6064 0.4925

DFAUST
punching punching jumping jacks jumping jacks punching

4D Atlas 1.7044 1.661 4.6092 1.8665 2.0516
Ours 1.09 0.51 0.9023 0.637 0.721

COMA
eyebrow mouth extreme high smile lips back mouth up

4D Atlas 0.0617 0.0493 0.0377 0.0626 0.0874
Ours 0.0137 0.0173 0.0136 0.0296 0.0640

VOCA
sentence 3 sentence 4 sentence 1 sentence 2 sentence 3

4D Atlas 0.6934 0.383 0.4494 0.4606 0.5266
Ours 0.103 0.0691 0.0759 0.109 0.1400

Table 4. Comparison of the proposed spatiotemporal registration with 4D Atlas [17]. The evaluation showcases the individual pair
performance on all four datasets. Table 3 provides the mean, standard deviation, and median for each dataset.
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(a) Before registration. (b) After registration 4D Atlas. (c) After registration Ours.

Figure 16. Boxplot visualization of the spatiotemporal registration experiment performed in Figure 8 in the main manuscript. We show the
alignment error (a) before spatiotemporal registration, (b) after spatiotemporal registration using 4D Atlas [17], and (c) after spatiotemporal
registration using our framework.

Figure 17. The 10 temporal diffeomorphisms applied on the same
4D surfaces for the evaluation of our framework with 4D Atlas as
shown in Figure 8. Note that the range for each temporal diffeo-
morphism is from [0, 1] → [0, 1].

• MPI DFAUST [5], which contains high-resolution 4D
body scans of 10 human subjects in motion, captured at
60 fps;

• VOCA [9], which contains high-resolution 4D facial
scans of 12 subjects speaking various sentences;

• MPI COMA [29], which contains 4D facial scans of 12
subjects performing various facial expressions; and

• MPI 4D CAPE [20], which contains high-resolution 4D
full-body scans of 10 male and 5 females in clothing.

The datasets come with registered triangular meshes. We
spherically parameterize these datasets using the imple-
mentation [14] of Praun and Hoppe’s approach [28]. We
then generate random diffeomorphisms to simulate non-
registered surfaces.

D. Results
In this section, we show additional results of our neural
framework that could not fit within the page limit of the
main manuscript. It also reproduces the figures of the main
manuscript in high resolution.

D.1. Dynamic Spherical Neural Surfaces

Figure 12 provides more quantitative results on the four
datasets. Similar to Figure 6 in main manuscript, here we
measure the representation capability of the proposed neural
representation using the pointwise error between the neural
surfaces and the original ground-truth surfaces. As one can
see in Figure 12, the error is smaller than 0.01%. Note that
all the surfaces have been normalized for scale to fit within
a unit sphere centered at the origin.

Figure 13, on the other hand, demonstrates the interpo-
lation ability of our representation; see Table 2 in the main
manuscript for a quantitative evaluation. In this experiment,
the neural representation was trained only on 30 temporal
samples of the entire sequences. Yet, the method is able
to interpolate the missing frames and generate a plausibly
smooth 4D surface. For example, the clothed 4D human
from the CAPE dataset with high clothing wrinkles is accu-
rately represented and faithfully interpolated using the pro-
posed D-SNS representation.

D.2. Spatiotemporal registration

Figures 14 and 15 show examples of the spatiotemporal reg-
istration of pairs of 4D surfaces. In Figure 14, we show
two examples of 4D humans before and after their tempo-
ral registration. Figure 15 shows two examples of 4D faces
before and after their temporal registration. These exam-
ples demonstrate that our neural framework is able to spa-
tiotemporally register complex body articulations and facial

6



(a) Before spatiotemporal registration.

(b) After spatiotemporal registration.

Figure 18. Example of a geodesic (a) before and (b) after registration between two 4D faces from the COMA dataset. In each example, the
first row corresponds to the source 4D surface, the last row corresponds to the target 4D surface, and the three intermediate rows correspond
to intermediate 4D surfaces sampled at equidistance along the geodesic path between the source and target. Observe that before registration,
the geodesics paths are not well-defined in the highlighted sequences. The highlighted row corresponds to the mean 4D surface.

expressions.

Figure 16 shows the quantitative evaluation of the tem-

poral registration on the same 4D surfaces as the ones
shown in Figure 8 in the main manuscript. In this exper-
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Before spatiotemporal registration.

Figure 19. Example of a geodesic before registration between two 4D surfaces performing a jumping action. In this example, the first
row corresponds to the source 4D surface, the last row corresponds to the target 4D surface, and the three intermediate rows correspond to
intermediate 4D surfaces sampled at equidistance along the geodesic path between the source and target. Observe that the geodesics paths
are not well-defined in the highlighted sequences. The highlighted row corresponds to the mean 4D surface.

iment, we use the evaluation framework proposed in 4D At-
las [17]. Note that, we have changed the range of the Y axis
from 0 − 1 to 0 − 5 to faithfully represent the error before
and after registration.

Figure 17, on the other hand, shows the 10 temporal dif-
feomorphisms applied to perturb the same 4D surfaces for
quantitative evaluation performed in Figure 8 of the main
manuscript.

Table 4 expands the results of Table 3 in the main
manuscript by providing the error on each individual 4D
surface. In this experiment, we measure the geodesic dis-
tance between the registered 4D surfaces using our method
and 4D Atlas method. Note that the smaller the geodesic
distance is, the better is the alignment.

D.3. 4D geodesics

Figure 18 shows an example of a geodesic of 4D faces from
COMA dataset. Figure 19 and Figure 20, on the other hand,
show a high-resolution version of the example of Figure 9 in
the main manuscript. Figure 19 shows the 4D surfaces be-
fore registration; notice how misaligned is the mean 4D sur-

face (highlighted in red) with the input surfaces. Figure 20
shows the same geodesic after spatiotemporal registration
of the source and target 4D surfaces.

D.4. Co-registration and mean 4D surfaces

Figure 21 and Figure 22 shows an example of the 4D mean
surface of a set of 4D neural surfaces, from the CAPE
dataset. In this document, we show the same example
before registration (Figure 21) and after registration (Fig-
ure 22). The 4D surfaces in these two figures perform a
squat action, and the following two rows perform a bending
action. Note that squat action is repetitive, and the number
of cycles differs from one 4D surface to another. In par-
ticular, the 4D surface in the first row performs two squats
while the remaining 4D surfaces perform a single one. De-
spite this complexity, the proposed approach is able to co-
register the 4D surfaces and compute a plausible 4D mean
that is as close as possible to all the other 4D surfaces.

Similarly, Figure 23 shows the co-registration and 4D
mean surface of six 4D faces, from the VOCA dataset,
speaking sentences. In this example, the first four rows
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After spatiotemporal registration.

Figure 20. Example of a geodesic after registration between two 4D surfaces performing a jumping action. In this example, the first row
corresponds to the source 4D surface, the last row corresponds to the target 4D surface, and the three intermediate rows correspond to
intermediate 4D surfaces sampled at equidistance along the geodesic path between the source and target. Observe that the geodesics paths
are well-aligned in the highlighted sequences. The highlighted row corresponds to the mean 4D surface.

speak a different sentence than the last two rows. The fa-
cial expressions on each 4D surface vary depending on their
speaking style. Note that our neural framework is able to ac-
curately co-register them and compute the 4D mean surface.
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Figure 21. Example of a mean 4D surface (highlighted in red) computed on six 4D surfaces from the CAPE dataset before their spa-
tiotemporal registration. The input 4D surfaces perform different actions: the 4D surfaces in the first four rows perform a squat action,
while the last two perform a back and forward bending action. Observe how misaligned the 4D surfaces are before their co-registration
and mean computation.
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Figure 22. Example of a mean 4D surface (highlighted in red) computed on six 4D surfaces from the CAPE dataset after their spatiotem-
poral registration. The input 4D surfaces perform different actions: the 4D surfaces in the first four rows perform a squat action while
the last two perform a back and forward bending action. Observe how aligned the 4D surfaces become after their co-registration and mean
computation compared to Figure 21.
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(a) Before spatiotemporal registration.

(b) After spatiotemporal registration.

Figure 23. Example of a mean 4D surface (highlighted in red) computed on six 4D surfaces from the VOCA dataset (a) before and (b)
after their spatiotemporal registration. The input 4D surfaces speak different sentences: the 4D surfaces in the first four rows speak the
same sentence while the last two rows speak a different sentence. Observe how aligned the 4D surfaces become after their co-registration
and mean computation.
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