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Abstract

We propose a novel framework for the statistical analysis
of genus-zero 4D surfaces, i.e., 3D surfaces that deform
and evolve over time. This problem is particularly chal-
lenging due to the arbitrary parameterizations of these sur-
faces and their varying deformation speeds, necessitating
effective spatiotemporal registration. Traditionally, 4D sur-
faces are discretized, in space and time, before computing
their spatiotemporal registrations, geodesics, and statistics.
However, this approach may result in suboptimal solutions
and, as we demonstrate in this paper, is not necessary. In
contrast, we treat 4D surfaces as continuous functions in
both space and time. We introduce Dynamic Spherical Neu-
ral Surfaces (D-SNS), an efficient smooth and continuous
spatiotemporal representation for genus-0 4D surfaces. We
then demonstrate how to perform core 4D shape analysis
tasks such as spatiotemporal registration, geodesics com-
putation, and mean 4D shape estimation, directly on these
continuous representations without upfront discretization
and meshing. By integrating neural representations with
classical Riemannian geometry and statistical shape analy-
sis techniques, we provide the building blocks for enabling
full functional shape analysis. We demonstrate the effi-
ciency of the framework on 4D human and face datasets.
The source code and additional results are available at
https://4d-dsns.github.io/DSNS/.

1. Introduction
Statistical 3D shape analysis focuses on quantifying shape
similarities and differences between 3D objects. It also aims
at modelling, using probability distributions, the shape vari-
ability within and across object classes. 4D shape statistics,
on the other hand, adds the temporal dimension. It aims
to discover typical shape deformation patterns in a class of
objects, and statistically model the variability of these de-
formations within and across classes. This is a very chal-
lenging problem since 3D shapes come with arbitrary dis-
cretization and thus need to be spatially registered onto each
other. 4D shapes add another level of complexity since ob-

jects deform and grow at different rates. Thus, they need
to be temporally aligned onto each other. Traditionally, 3D
and 4D shapes are represented as discrete point clouds or
triangular meshes. The spatiotemporal registration problem
is then reduced to that of matching landmarks across shapes.
Shape statistics such as means and modes of variation are
then computed directly on these registered landmarks. This,
however, leads to solutions that depend on the quality and
resolution of the discretization.

In this paper, we treat 4D shapes as continuous func-
tions in both space and time and develop a novel statistical
analysis framework that operates directly on these contin-
uous representations, without upfront discretization. This
includes performing spatiotemporal registration, computing
geodesics, and estimating the mean 4D shape of a set of 4D
surfaces. We focus on genus-0 surfaces, which are abundant
in nature, e.g., human bodies and body parts. We propose
a novel surface-based neural representation, hereinafter re-
ferred to as Dynamic Spherical Neural Surface (D-SNS),
that treats a 4D surface as a continuous mapping from a
spherical domain and time to 3D. This mapping is then pa-
rameterized using Multi-Layer Perceptrons (MLPs). This
will allow us to formulate the spatial registration problem
as that of finding the optimal spatial reparameterizations of
the neural functions. Similarly, temporal registration can be
formulated as the problem of optimal temporal reparame-
terization of these neural functions. This can be efficiently
implemented using an MLP and optimized using an elastic
Riemannian metric that quantifies physical deformations of
surfaces, i.e., bending and stretching. Additionally, we pro-
pose a framework that co-registers a set of 4D surfaces, rep-
resented with their D-SNSs, and simultaneously computes
their 4D mean as a D-SNS. The main contributions of this
paper can be summarized as follows;

• We introduce a new continuous representation for genus-
0 4D surfaces, parameterized using Multi-Layer Percep-
trons (MLPs). This framework treats both 3D and 4D
shapes as functions, enabling functional shape analy-
sis. We also demonstrate how this representation can
be efficiently learned from discrete input 4D surfaces,
with performance validated on datasets such as 4D facial
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shapes [9, 29] and 4D human bodies [5, 20].
• We reformulate the spatiotemporal registration problem

as one of optimally reparameterizing, in space and time,
the neural representation. We measure the optimality us-
ing a physically-motivated Riemannian elastic metric.

• We show that by mapping our representation to the space
of Square Root Normal Fields (SRNF) [13, 16] and
Square Root Velocity Fields (SRVF) [31, 32], the com-
plex Riemannian elastic metric simplifies to an L2 metric,
which facilitates various downstream applications.

• We develop a comprehensive framework for performing
spatiotemporal registration and computing geodesics and
4D means directly from the neural surface representation
without discretization.

The remainder of the paper is organized as follows; Sec-
tion 2 discusses the related work. Section 3 describes the
proposed approach. Section 4 presents the results of the
proposed approach, analyzes its performance, and compares
it to the state-of-the-art. Section 5 concludes the paper.

2. Related Works

2.1. Statistical 3D and 4D shape analysis

Early statistical 3D shape analysis methods, based on mor-
phable models [2, 4, 8], treat 3D shapes as a set of dis-
crete landmarks in correspondence and use the L2 metric
for computing geodesics and Principal Component Anal-
ysis (PCA) for their statistical analysis. These methods,
however, assume that the 3D shapes are elements of an
Euclidean shape space. As a result, they cannot handle
3D shapes that undergo large elastic deformations such
as bending and stretching. SMPL model and its vari-
ants [18, 19, 27, 38] address this issue by explicitly mod-
elling articulated motion using skeleton joints. SMPL-
based methods, however, are class-specific and thus, they
do not allow cross-category analysis.

A common property of these methods is that they as-
sume that correspondences are given, i.e., either they are
manually specified or computed in a processing step us-
ing other techniques, e.g., [6, 24, 25]. Jermyn et al. [13]
and later Laga et al. [16], treat 3D shapes as elements of
a Riemannian shape space equipped with an elastic met-
ric that measures bending and stretching. This way, regis-
tration, geodesics, and summary statistics computation can
be jointly formulated as an optimization problem under the
same elastic metric. More importantly, they showed that by
further mapping the shapes to the space of Square Root Nor-
mal Fields (SRNFs), the complex elastic metric becomes an
L2 metric, thus, significantly simplifying downstream ap-
plications [15, 16]. The SRNF representation has been used
for the analysis of genus-0 surfaces that undergo nonrigid
motion. They have also been extended to the analysis of 4D
surfaces [17] by treating them as time-parameterized trajec-

tories in the SRNF space, which has an L2 structure. Other
methods represent 4D surfaces as the flow of deformation
of the 3D volume and compute geodesics on a Riemannian
manifold [3, 7, 11]. Unfortunately, computing deformations
on 3D volumes is computationally expensive.

All these methods treat 4D shapes as discrete, in space
and time, signals. In this paper, we consider, for the first
time, 4D shapes as continuous functions and derive a com-
prehensive framework that operates directly on these func-
tions. Discretization is only required for visualization.

2.2. Neural representations

Implicit neural representations such as DeepSDF [26], Neu-
ral Radiance Fields (NeRF) [21], and Neural Implicit Sur-
faces (NeuS) [33], leverage neural networks to represent the
geometry and appearance of 3D shapes as continuous func-
tions. They have been extensively used for 3D reconstruc-
tion but also have the potential to be used for 3D shape anal-
ysis tasks. In particular, some papers used neural networks
to overfit individual SDFs [10]. This leads to a continuous
and diffentiable representation of individual shapes. While
SDFs represent 3D shapes of arbitrary topologies, they are
volumetric representations and thus expensive to evaluate
since, in general, the surface of interest occupies just a tiny
proportion of the 3D space. As such, several papers have ex-
plored neural representations of explicit surfaces. In partic-
ular, AtlasNet [12] models surfaces as a collection of para-
metric patches. Each patch is treated as a continuous map-
ping from a 2D domain to 3D and thus can be parameter-
ized using an MLP. Morreale et al. [22] introduced Neural
Surface Maps, which represent a surface as a mapping of
a unit disk to 3D and then overfits to it an MLP. This rep-
resentation, which enables surface-to-surface mapping, has
been extended to computing semantic maps between genus-
0 surfaces [23] and for 3D reconstruction [36]. Williamson
et al. [34] showed how to compute differential properties of
surfaces and perform geometry processing tasks on spheri-
cal neural representations without upfront discretization.

Our approach follows [1, 22]. However, our first key
novelty is the generalization of Spherical Neural Surfaces to
dynamic surfaces, i.e., 3D surfaces that deform over time,
and show how to learn it from discrete 4D surfaces. We
refer to this representation as Dynamic Spherical Neural
Surfaces (D-SNS). Our second key novelty is that we use
this representation to develop a comprehensive framework
for the statistical analysis of 4D surfaces represented with
their D-SNS. Traditionally, statistical shape analysis is per-
formed on discretized surfaces. We show that this is not
necessary and propose a framework that enables for the first
time to perform functional shape analysis.
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3. Method
We introduce a novel neural representation, termed Dy-
namic Spherical Neural Surfaces, to represent 4D (i.e., 3D
+ time) surfaces (Section 3.1). The representation is con-
tinuous in space and time and thus enables us to treat 4D
surfaces as continuous functions. To enable the statistical
analysis of such 4D surfaces, we introduce a Riemannian
shape space, equipped with a Riemannian elastic metric that
measures bending and stretching. 3D surfaces can be seen
as points in the Riemannian shape space while 4D neural
surfaces can be seen as trajectories in that space. The shape
space, however, is of infinite dimension and has a nonlin-
ear structure, which makes downstream analysis tasks com-
plex and computationally expensive. Thus, we further map
3D surfaces to the space of Square-Root Normal Fields
(SRNFs) [16], which has an L2 structure. More importantly,
the L2 metric in the space of SRNFs is equivalent to the par-
tial elastic metric in the original space. This way, 4D neural
surfaces become trajectories in the SRNF space, which is
Euclidean. Thus, spatiotemporal registration (Section 3.2),
geodesics between neural 4D surfaces (Section 3.3), and
summary shape statistics of neural 4D surfaces (Section 3.4)
can be efficiently computed in the SRNF space and mapped
back to the original space for visualization. Importantly, we
show that these quantities can be directly computed on the
neural representation without upfront discretization.

3.1. Dynamic Spherical Neural Surfaces (D-SNS)

We treat a manifold surface, after normalization for trans-
lation and scale, as a function f : Ω → [−1, 1]3, where
Ω ⊂ R3 is a parameterization domain. Let Cf be the pre-
shape space of such functions. When dealing with closed
genus-0 surfaces, Ω can be defined as a unit sphere S2. Dy-
namic surfaces, i.e., surfaces that deform over time can be
represented in the same way by adding the temporal dimen-
sion, i.e., F : Ω × [0, 1] → [−1, 1]3 where [0, 1] is the nor-
malized time domain. Traditionally, f and F are discretized
both in space, and space and time, respectively [16, 17].
Thus, the performance of the subsequent analysis tasks de-
pends on the quality of the discretization. In this paper, we
exploit the power of neural networks as universal approxi-
mators to represent F as a continuous function in space and
time. We refer to this novel neural representation as Dy-
namic Spherical Neural Surfaces (D-SNS).

3.1.1 Representation

Given a discrete 4D surface where each time instance is
a genus-0 triangular mesh, we first spherically parameter-
ize each individual mesh using the approach of Praun and
Hoppe [14, 28] and put them in correspondence using the
approach of Laga et al. [16]. To learn a continuous repre-
sentation, we overfit a Multi-Layer Perceptron (MLP) FΘ

FΘ

0.0 1.0
F

0.0 1.0t p

t

t
s

4D surface F : S2 × [0, 1] → [−1, 1]3.

Figure 1. Dynamic Spherical Neural Surface. Given a discrete
4D surface of meshes parameterized by a unit sphere S2 and time
t - we overfit an MLP FΘ to create a continuous 4D surface F by
minimizing the Mean Square Error between the ground truth and
predicted surface points.

to this representation. The MLP maps a s ∈ S2 and a time
t ∈ [0, 1] to a 3D surface point p ∈ [−1, 1]3:

FΘ : S2 × [0, 1] → [−1, 1]3; s, t 7→ FΘ(s, t) = p. (1)

Here, s = (u, v) are the spherical coordinates and Θ the
network parameters. We overfit the MLP to a discrete 4D
surface by minimizing the Mean Square Error between the
ground truth point pi and the predicted point p∗i :

LN =
1

K

1

N

K∑
j=1

N∑
i=1

∥ FΘ(si, tj)− pij ∥2 . (2)

Here, N is the number of sample points per surface and K
is the number of temporal samples used for training.

One advantage of the proposed neural representation is
that differential properties of 3D and 4D surfaces can be
computed directly in the continuous domain, without dis-
cretization. In particular, the normal field of a 3D surface
FΘ(·, t), which is essential for the spatiotemporal registra-
tion as will be seen in Section 3.2, is given by:

∇FΘ(·, t) =
(
∂FΘ(·, t)

∂u
,

1

sinu

∂FΘ(·, t)
∂v

)⊤

, (3)

where u ∈ [0, π] and v ∈ [0, 2π). Similarly, the tan-
gent field to the 4D surface can be computed by taking the
derivative with respect to time, i.e., ∂FΘ/∂t. These differen-
tial quantities can be automatically computed using the au-
tomatic differentiation functionality built into modern ma-
chine learning setups.

3.1.2 Network architecture

We use an MLP consisting of six residual blocks. Each
block has two layers, with 1024 nodes each. The use of
residual connections significantly enhances the network’s
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Figure 2. Illustration of the spatiotemporal registration framework
proposed in this paper. ”Enc” refers to positional encoding.

ability to represent coarse and fine geometric details. It
also significantly improves convergence time and reduces
the risk of converging to local minima. Inspired by Space-
time NeRF [35], we apply positional encoding to the spatial
domain S2 and to the temporal domain [0, 1]. To avoid sharp
edges typically associated with the ReLu activation func-
tion, we use the SoftPlus activation function [37], which is
smooth and continuous. This way, the neural network rep-
resents 4D surfaces with very high accuracy.

3.2. Spatiotemporal registration using D-SNS

In this section, we show how to spatiotemporally register
two 4D surfaces F1 and F2 directly in the continuous do-
main using their D-SNS representation. We formulate the
spatiotemporal registration problem as that of finding a ro-
tation O ∈ SO(3), a spatial diffeomorphism γ : S2 → S2,
and a temporal diffeomorphism ζ : [0, 1] → [0, 1] that bring
the two 4D surfaces as close as possible to each other. This
is an optimization problem of the form:

(O∗, γ∗, ζ∗) = argmin
O,γ,ζ

∫ 1

0

L (F1(t), O(F2 ◦ ζ)(t) ◦ γ) dt.

(4)
Here, L is a measure of closeness. In this paper, we treat
γ and ζ as continuous functions; see Figure 2. During
training, we freeze the D-SNS networks that represent F1

and F2, and only optimize the parameters of γ and ζ, us-
ing the metric L as the loss function. This is, however, not
straightforward and can be very time-consuming since the
optimization needs to be performed over the entire tempo-
ral sequence and using a metric L that is not linear. Thus,
we first proceed with spatial registration (Section 3.2.1) fol-
lowed by temporal registration (Section 3.2.2).

3.2.1 Spatial registration

For simplicity of notation, let f1 = F1(t) and f2 = F2(t).
To spatially register f2 onto f1, we need to find a spatial
diffeomorphism γ∗ : S2 → S2 and a rotation O∗ ∈ SO(3)
that bring f2 as close as possible to f1, i.e., :

(O∗, γ∗) = argmin
O,γ

dC(f1, O(f2 ◦ γ)). (5)
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Figure 3. Illustration of the spatial registration of Dynamic Spher-
ical Neural Surfaces (D-SNSs). First, input D-SNSs are mapped
to their SRNF representation. We then use the L2 metric in the
SRNF space to elastically register the two surfaces, i.e., finding
the optimal rotation O∗ and diffeomorphism γ∗ that minimize the
L2 metric in the SRNF space.
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Figure 4. A spatial diffeomorphism can be formulated as an MLP
with two layers: the input layer evaluates the harmonic basis at
the query point s ∈ S2. The output layer then computes their
weighted sum. The learnable parameters are the weights of the
output layer. To perform spatial registration, we freeze the weights
of the D-SNS networks and only optimize the weights of the dif-
feomorphism network using the loss of Eqn. (7).

The metric dC should measure the amount of bending and
stretching one needs to apply to f2 in order to align it onto
f1. Such nonlinear metric, however, is complex to work
with since it leads to a nonlinear optimization. Jermyn et
al. [13] showed that by mapping the surfaces to the space
of Square Root Normal Fields (SRNFs), the elastic metric
becomes an L2 metric. Formally, the SRNF map H of a
surface f is given by:

H(f) = h, such that h(s) =
n(s)√

∥ n(s) ∥2
, (6)

where n is the normal field of the surface f and is computed
directly from the SNS representation using Eqn. (3).

With this representation, the spatial registration in
Eqn. (5) can be reformulated under the SRNF as an opti-
mization problem of the form (see Figure 3):

(O∗, γ∗) = argmin
O,γ

∥ h1 −O(h2 ◦ γ) ∥2 . (7)
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Here, h1 = H(f1) and h2 = H(f2). To solve this optimiza-
tion problem, we represent the diffeomorphism γ, which
is a function on S2, using the weighted sum of spherical
harmonic basis: γ =

∑n
i=1 aiBi and estimate the optimal

weights {ai} using gradient descent; see Figure 4. During
training, we freeze the weights and jointly optimize for ro-
tation and diffeomorphism in an iterative manner until con-
vergence: we first fix γ and solve for the rotation O using
Singular Value Decomposition. We then fix O and solve for
γ by optimizing the loss of Eqn. (7) using gradient descent.
We repeat this process until convergence.

3.2.2 Temporal registration

Given two spatially registered 4D surfaces and both repre-
sented using their D-SNS F1 and F2, their temporal regis-
tration can be formulated as that of finding a time-warping
function ζ : [0, 1] → [0, 1] that brings F2 as close as possi-
ble to F1. This is an optimization problem of the form:

ζ∗ = argmin
ζ

d(F1, F2 ◦ ζ). (8)

where d is a measure of closeness. We treat time warping
as curve stretching and thus, d should measure elasticity.
However, working directly with the 4D surfaces F1 and F2

is computationally expensive since they are of infinite di-
mension (given the continuous nature of the proposed rep-
resentation). Also, the metric d should measure elasticity
and thus is nonlinear, which makes the optimization prob-
lem of Eqn. (8) complex to solve.

To address the first problem, we map the 4D surfaces to
a low dimensional space of curves using Principle Compo-
nent Analysis. This way, a 4D surface F becomes a curve α
in the low-dimensional PCA space. Now, to address the sec-
ond problem, we further map the curve to their Square Root
Velocity Fields (SRVFs). Srivastava et al. [30] showed that
the partial elastic metric that measures bending and stretch-
ing of curves becomes an L2 metric in the SRVF space. For-
mally, the SRVF of a curve α is defined as its tangent field
scaled by the square root of the tangent field, i.e., :

q = Q(α) =

.
α√
∥ .
α ∥

. (9)

Here,
.
α = ∂α

∂t is the tangent vector field on α. Given two
trajectories α1 and α2, we represent them in their respective
SRVFs q1 and q2. Then, Eqn. (8) is reformulated as:

ζ∗ = argmin
ζ

∥ q1 − q2 ◦ ζ ∥2 . (10)

We treat ζ as a continuous function and implement it using
an MLP that takes time t ∈ R and returns ζ(t), which we
enforce to in [0, 1] by applying to it a Sigmoid activation
function. During training, we freeze the parameters of the
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Figure 5. Illustration of the temporal registration process of two
4D surfaces F1 and F2 using the proposed Dynamic Spherical
Neural Surfaces representation. The 4D surfaces are first mapped
to the SRVF space, which has an Eucldiean structure. Thus, we
formulate the temporal registration of 4D surfaces as that of elas-
tic registration of curves in the SRVF space.

networks of q1 and q2 and only update the parameters of ζ
by minimizing the loss of Eqn. (10). However, to ensure
that the MLP learns a diffeomorphism in the temporal do-
main [0, 1], i.e., , ζv : [0, 1] → [0, 1] such that 0 < ζ(t) < 1,
we regularize the time-warping network by enforcing the
first derivative of the network with respect to time t to be
non-negative. This is done by adding the following regular-
ization term to the loss function:

LM =

∫ 1

0

max

(
0,−∂ζ(t)

∂t

)
. (11)

Hence, the total loss for temporal registration is:

L =∥ q1 − q2 ◦ ζ ∥2 +λLM. (12)

Figure 5 summarizes the temporal registration process. We
use an MLP composed of two residual blocks. Each block
has two layers of 32 neurons each. We train the network
using mini-batches of discretized time intervals and change
the input samples after every 200 epochs to learn a continu-
ous temporal registration.

3.3. Geodesics

Let F1 and F2 be two 4D surfaces after their spatiotempo-
ral registration, using the approach described in Section 3.2.
The geodesic between the two 4D surfaces can now be de-
fined as the shortest path, with respect to the elastic metric
of Eqn. (4). However, instead of working with this complex
metric, we first map the 4D surfaces to the SRVF space, fol-
lowing the approach described in Section 3.2.2. Let q1 and
q2 be the SRVFs of F1 and F2, respectively. Since the SRVF
space is Euclidean, then the geodesic path Λq between q1
and q2 is a straight line, i.e.,

Λq(τ) = (1− τ)q1 + τq2, τ ∈ [0, 1], (13)
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which is straightforward to compute. To visualize the
geodesic paths Λq , we first map the obtained geodesics in
the SRVF space back to the space of 4D surfaces through
SRVF inversion, which has an analytical form [30], fol-
lowed by PCA inversion. Figure 9 shows an example of
a geodesic between two 4D surfaces corresponding to 4D
human performing jumping actions.

3.4. Co-registration and Karcher mean

The mean 4D surface F̄ , also called Karcher mean, of a
set 4D surfaces {F1, . . . , Fn} is the 4D surface that is the
closest, with respect to the metric of Eqn. (4), to all the
input 4D surfaces after their spatiotemporal co-registration.
Thus, the joint problem of computing the mean 4D surface
and co-registration is an optimization problem of the form:

F̄ , {O∗
i , γ

∗
i , ζ

∗
i }ni=1 =

argmin
F,{Oi,γi,ζi}n

i=1

n∑
i=1

∫ 1

0

L (F (t), O(Fi ◦ ζ)(t) ◦ γ) dt. (14)

Similar to the pairwise temporal registration, we solve this
optimization in two stages. First, we separately perform the
spatial registration of the input 4D surfaces by computing
(O∗

i , γ
∗
i ) following the approach described in Section 3.2.1.

Then, we map the spatially registered 4D surfaces to their
SRVF space and compute the mean as well as the temporal
warpings {ζ∗i }ni=1 using the L2 metric, which is equivalent
to the elastic metric L in the original space, i.e., :

−
q, {ζ∗i }ni=1 = argmin

q,{ζi}n
i=1

n∑
i=1

∥ q − qi ◦ ζi ∥2 . (15)

Once solved, the mean 4D surface F̄ can be computed ana-
lytically by applying the inverse SRVF [30] to

−
q .

4. Results

Implementation details. We trained our neural networks
using NVIDIA GeForce RTX 4090 GPU with 2.4 GHz In-
tel Core i9. All networks are optimized using RMSProp
with a learning rate of 10−4 and a momentum of 0.9. We
trained D-SNS for 50K epochs, which takes between two
to three hours depending on the number of vertices in the
mesh, the spatial diffeomorphism for 500 iterations, which
takes around two minutes, and the time warping network for
up to 3, 000 epochs, which takes between 10 to 30 minutes.
The D-SNS and the time-warping network use SoftPlus ac-
tivation. We initialize the weights of the time-warping net-
work by overfitting it to the identity diffeomorphism.

Datasets. We have evaluated the proposed framework on
the 4D face and 4D human body surfaces from the MPI
DFAUST [5], VOCA [9], COMA [29], and CAPE [20]; see

Datasets Mean (×10−6) Std (×10−6) Median (×10−6)
DFAUST [5] 1.60 0.52 1.52
CAPE [20] 1.51 0.68 1.27
COMA [29] 2.29 1.68 1.66
VOCA [9] 0.89 0.51 0.79

Table 1. Evaluation of the performance of the proposed neural
representation on four datasets. We use the average L2 distance
between the ground truth discrete and the neural surface.

Original temporal samples 30 temporal samples
Datasets Mean Std Median Mean Std Median

(×10−5) (×10−5) (×10−5) (×10−5) (×10−5) (×10−5)
DFAUST [5] 0.17 0.08 0.16 1.00 0.55 1.20
CAPE [20] 0.14 0.02 0.12 1.34 0.72 1.25
COMA [29] 0.23 0.10 0.20 0.14 0.02 0.14
VOCA [9] 0.10 0.04 0.10 0.11 0.06 0.08

Table 2. D-SNS interpolation results on original and 30 tempo-
ral samples, computed using the average L2 distance between the
ground truth and the neural surfaces. Results are shown for five
random 4D surfaces across four datasets. Note that, due to small
errors, all values are shown as multipliers of 10−5.

the Supplementary Mayerial. The datasets come with reg-
istered triangulation meshes. We spherically parameterize
these datasets using the implementation [14] of Praun and
Hoppe’s approach [28]. We then generate random diffeo-
morphisms to simulate non-registered surfaces.

4.1. Dynamic Spherical Neural Surfaces results

In this experiment, we take the ground truth discrete 4D sur-
faces of DFAUST, COMA, CAPE, and VOCA datasets and
train one D-SNS per 4D surface. To quantitatively evalu-
ate the quality of the neural representation, we measure the
average point-wise L2 distance between the ground truth
discrete 4D surface and the D-SNS representation. Table 1
summarizes the mean, median, and standard deviation of
the representation error over each of the four datasets. As
one can see, the errors are in the order of 10−6, which
demonstrates that the novel neural representation can faith-
fully represent genus-0 4D surfaces. (Note that all the sur-
faces are normalized for translation and scale and thus they
fit within a bounding sphere of radius 1.)

Figure 6 shows some results demonstrating the repre-
sentation quality of the proposed D-SNS. In this figure, we
picked up some surfaces and showed, in the form of a heat
map, the error between the original surface and the neu-
ral surface. As one can see, the errors are less than 0.01.
This shows that the proposed D-SNS can accurately rep-
resent complex 4D surfaces. Table 2, on the other hand,
demonstrates its interpolation ability. In this experiment,
the neural representation was trained only on 30 temporal
samples of the entire sequence, yet, the method is able to
interpolate those keyframes and generate plausibly smooth
4D surfaces. This demonstrates the D-SNS ability to suc-
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(a) 4D humans.

(b) 4D faces.

Figure 6. We measure the pointwise error between the proposed
D-SNS and the groundtruth discrete 4D surfaces. Here, we show
some time frames with the error plotted as a heatmap. Observe
that the proposed neural representation can accurately represent
4D surfaces, with a pointwise error that is less than 0.01. Please
refer to the Supplementary Material for additional results.

cessfully interpolate temporally-sparse sequences.

4.2. Spatiotemporal registration and geodesics

Figure 7 shows an example of the spatiotemporal registra-
tion of pairs of 4D humans deforming at different rates. We
show the 4D surfaces before and after their temporal regis-
tration. As we can see, our approach is capable of bringing
the sequences in full alignment. Note that the spatiotempo-
ral registration of human bodies is more complex than faces
due to greater motion and body articulation, which leads to
significant bending and stretching. Please refer to the Sup-
plementary Material for additional visual results.

We quantitatively evaluate the proposed temporal reg-
istration against the method of Laga et al. [17] using the
evaluation framework proposed in 4D Atlas [17], since, to
the best of our knowkedge, is the only method paper that
dealt with the analysis of 4D surfaces. We take a 4D neural
surface Fi and apply to it 10 random temporal diffeomor-
phisms ζ∗ij resulting in 10 surfaces {Fj}10j=1 that differ in
their execution speeds. Then, for each pair (Fi, Fj), we
compute, using the proposed approach, the optimal time
warping ζ∗ij that aligns Fj onto Fi. Ideally, ζ∗ij should be
the inverse of ζij . Thus, we use the distance between ζ∗ij
and the inverse of ζij as a measure of error, which we ag-
gregate over the 10-random diffeomorphisms.

We perform this experiment on the four datasets, using
our method and 4D Atlas [17]. We use two different tempo-
ral samplings (50 and 25 temporal samples) to analyze the
robustness of both methods. Figure 8 presents the results in
the form of box plots. This experiment shows that when the
temporal sampling is dense, the two methods achieve simi-
lar performance, with a slight advantage to ours. However,
when we reduce the temporal sampling (25 samples), we
observe that the alignment error of 4D Atlas [17] increases
while ours remains more or less stable. This is due to the
fact that we treat 4D surfaces as continuous functions and

(a) Source.

(b) Target before spatiotemporal registration.

(c) Target after spatiotemporal registration.

Figure 7. Example of the spatiotemporal registration of two 4D
humans from the CAPE dataset. The proposed framework aligns
the target 4D surface (b) onto the source (a). The target neural
surface after registration (c) is fully aligned with the source. Please
refer to the Supplementary Material for additional results.

50 samples 25 samples
(a) 4D Atlas [17].

50 samples 25 samples
(b) Ours.

Figure 8. Boxplots providing the statistics on the accuracy of the
temporal registration when using two different temporal samplings
(50 and 25 temporal samples). We run the experiment on 20 pairs,
each pair is randomly sampled with 10 different random temporal
diffeomorphisms and report the statistics on the temporal registra-
tion error aggregated over the 10 runs. The red lines denote the
median error, while the boxes represent its spread.

thus they are less sensitive to the sampling density.
We also evaluate the registration performance on differ-

ent 4D surfaces performing the same action; see Table 3.
In this experiement, we take 5 pairs from each data set, per-
form their temporal registration using 4D Atlas [17] and our
method. We then measure the geodesic distance between
the registered 4D surfaces. As each pair of 4D surfaces per-
form the same action, the smaller the geodesic distance, the
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CAPE [20] DFAUST [5] COMA [29] VOCA [9]
Mean Std Median Mean Std Median Mean Std Median Mean Std Median

4D Atlas 1.2938 0.4764 1.404 2.3785 1.1237 1.8665 0.0597 0.0165 0.0617 0.5026 0.1057 0.4060
Ours 0.3574 0.1697 0.3199 0.7726 0.2037 0.7210 0.0276 0.0191 0.0173 0.0994 0.0253 0.1030

Table 3. Comparison of the proposed spatiotemporal registration with 4D Atlas [17]. The evaluation is performed on five pairs performing
the same actions. We measure the geodesic distance after the spatiotemporal registration using 4D Atlas [17] and our approach. The
smaller this distance is, the better the alignment. The best results are shown in bold; see the Supplementary Material for additional results.

Figure 9. Example of a geodesic after the spatiotemporal registra-
tion between two 4D surfaces performing a jumping action. The
first row shows the source 4D surface, the last row shows the target
4D surface, and the intermediate rows show intermediate 4D sur-
faces sampled at equidistance along the geodesic path between the
source and target. The highlighted row corresponds to the mean
4D surface. The Supplementary Material provides the original
4D surfaces and geodesic before spatiotemporal registration. The
Supplementary Material provides more results.

better the alignment. As we can see, our continuous frame-
work is able to outperform 4D Atlas [17] on all datasets. We
performed this experiment using five pairs of 4D surfaces,
each pair performing the same action at varying speeds. The
Supplementary Material provides more evaluation details.

4D geodesics. Figure 9 shows an example of a geodesic be-
tween 4D neural surfaces performing a jumping action. We
show the geodesic after spatiotemporal registration of the
source (top row) to the target surface (bottom row). The
Supplementary Material shows the geodesic before spa-
tiotemporal registration. Observe that before registration
(see the Supplementary Material), the jumping actions are
misaligned, and the geodesics are not as closely aligned
compared to those after registration. We refer the reader to
the Supplementary Material for more examples and results.

4.3. Co-registration and mean 4D surfaces

Figure 10 shows the 4D mean surface of a set of 4D neural
surfaces, from the CAPE dataset, after their co-registration.
These surfaces perform various actions at different execu-
tion speeds. The 4D surfaces in the first four rows perform a

squat action, and the following two rows perform a bending
action. Note that the squat action is repetitive and the num-
ber of cycles differs from one 4D surface to another. Despite
this complexity, the proposed approach is able to co-register
the 4D surfaces and compute a plausible 4D mean that is as
close as possible to all the other 4D surfaces; see the Sup-
plementary Material for additional examples.

5. Conclusion
We proposed Dynamic Spherical Neural Surfaces as a novel
continuous representation of genus-0 4D surfaces that is
continuous in both space and time. We then formulated the
4D shape analysis problem as one of analyzing functions.
This allows all analysis tasks to be performed directly on
these continuous functions without unnecessary discretiza-
tion. By linking neural networks with the classical Rieman-
nian geometry for 4D shape analysis, this work establishes
the first foundational approach that enables comprehensive
functional analysis of 4D shapes.

Figure 10. Example of a mean 4D surface (highlighted in red)
computed on six 4D surfaces from the CAPE dataset after their
spatiotemporal registration. The input 4D surfaces perform differ-
ent actions: the 4D surfaces in the first four rows perform a squat
action while the last two perform a back and forward bending ac-
tion; see the Supplementary Material for additional results.
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and Stéphanie Allassonnière. Clustering of longitudinal
shape data sets using mixture of separate or branching trajec-
tories. In Medical Image Computing and Computer Assisted
Intervention – MICCAI 2019: 22nd International Confer-
ence, Shenzhen, China, October 13–17, 2019, Proceedings,
Part IV, page 66–74, Berlin, Heidelberg, 2019. Springer-
Verlag. 2

[12] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
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